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Analyticity of Density of States in a 
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The n-orbital gauge-invariant model of disordered electronic systems proposed 
by Wegner is studied in the regime of dominant diagonal disorder. Analyticity 
of the density of states is established in two cases: (a) when the number of 
orbitals is small, (b) when the number of orbitals is large and the energy is in 
the expected extended states region. 
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1. I N T R O D U C T I O N  

The motion of a particle in a random potential has attracted much atten- 
tion (for recent reviews see, e.g., Refs. 1 and 2). The most interesting 
questions for such systems concern the density of states, the nature of the 
spectrum, and transport properties. A lattice model that has been inten- 
sively studied is the Anderson tight binding model with diagonal disorder. 
The dynamics of the particle is described in this model by the Hamiltonian 

H = - A + V  on 12(2 J) (1) 

where A is the finite-difference Laplacian and V is a real, random potential 
with independent, identically distributed values. In one dimension it was 
rigorously proved that the density of states has nice regularity properties 
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and the spectrum of H is of pure point type with exponentially localized 
eigenstates. (2) In higher dimensions it was recently shown that the density 
of states is regular and the spectrum is of pure point type with exponen- 
tially localized eigenfunctions for the region of high disorder or large 
energies. (2) For weak disorder in three dimensions, it has been conjectured 
by Anderson that there is an interval of (absolutely) continuous spectrum 
outside which the pure point spectrum appears. The energies at which the 
type of spectrum changes are called mobility edges. Nevertheless, it is 
commonly accepted that the density of states does not feel the mobility 
edges and remains regular all over the spectrum. 

At present, the region of continuous spectrum (extended states) of the 
Anderson model seems to be difficult to control rigorously. 

Let us introduce now some notations and give the precise definition of 
the density of states: Let A be a box in 2U and H(A) the Hamiltonian 
defined in (1) with some boundary conditions for the lattice Laplacian. Let 
NA(E) denote the number of eigenvalues of H(A) less than or equal to E. 
The limit 

1 
lim - -  N A(E) - n(E) (2) 

AfZ" IAI 

exists with probability 1 with respect to the probability distribution d2(V) 
of the random potential on Z a and is independent of V/2) Furthermore, 

n(E)= f (xl P(E) Ix) d)~(V) (3) 

where x is an arbitrary site of Z d and P(E) is the spectral projection onto 
the subspace of states of energy less than or equal to E. It is known (3) that 
the integrated density of states n(E) is continuous. If n(E) is differentiable 
w.r.t. E, then from (3) it follows (1'2) that the density of states is 

d 1 
p(E) =- ,  n(E) = -  lim lim Im G~:,(A; E+ io)) 

a / ~  ~ o~,LO A T Z  d 
(4) 

where 

Gx:~(A,E)=f (x[ ( H - E )  l [x) d)~(V) (5) 

In the present paper we study another model, which has been 
proposed by Wegner. (4) It is the n-orbital lattice model with nondiagonal 
disorder and local gauge invariance (for the precise definitions, see 
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Section2). Much work has been done on this model by Wegner and 
co-workers (for review see Ref. 5), including an expansion of the critical 
exponents at the mobility edge around the lower critical dimensionatity 
two. Sch~ifer and Wegner C6) have given a Lagrangian formulation of the 
model by using the replica trick. Instead of the replica trick, one can use 
the method of superfields worked out for the motion of electrons in ran- 
dom potentials by Efetov. (7~ The superfield formulation of the gauge- 
invariant model will be discussed in Section 2. Models with nondiagonal 
disorder have been considered rigorously in Ref. 8 (and references given 
there). It appears that in the cases considered in Ref. 8 the results on the 
localization problem, known from the Anderson model, remain valid. The 
gauge-invariant model (with diagonal and off-diagonal Gaussian dis- 
tribution) considered here is different from that of Ref. 8. It is distinguished 
by strong phase cancellations induced by the gauge invariance. In the 
present paper we study analyticity properties of the density of states of 
Wegner's model for dominant diagonal disorder if (a) the number of 
orbitals associated to each lattice site is small, (b) the number of orbitals is 
large and the energy is in the conjectured extended states region. 

A particular case of (a) was previously considered by Ziegler./9) 

2. THE n -ORBITAL  G A U G E - I N V A R I A N T  MODEL A N D  THE 
AVERAGED ONE-PARTICLE GREEN'S FUNCTION IN THE 
SUPERFIELD VARIABLES 

In the Anderson model described in the introduction the matrix 
elements Gxy of the averaged one-particle Green's function decay rapidly 
with increasing distance t x - y ]  due to phase fluctuations. This result was 
rigorously proved in the region of convergence of the random paths expan- 
sion (i.e., large energy or high disorder) in Ref. 10. Wegner introduced (4~ a 
model for the study of disordered electronic systems in which the phases 
are totally uncorrelated from site to site as a consequence of (local) gauge 
invariance. Let us give a precise definition of this model. Consider the 
Hamiltonian H =  V o n  12(~d)@C n ( n o  deterministic part!) given by the 
Hermitean matrix elements V~y~=(V~)*; x, yeZd; a, f l = l ,  2 ..... n; 
randomly distributed with the Gaussian measure 

norm ~ Z Z-M~_~ [v;~t 2 [I dV~x 
x , y  ~, f l  - ~ ,X 

x [ I  dRe V~dIm V~ (6) 
(~,x) -< (/3,y) 

Here Mxy ~> 0 are matrix elements of a symmetric matrix M subjected to 
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some other conditions given below [ <  is an order relation among pairs 
(a, x)] .  We assume that M is a positive-definite, symmetric, translation- 

1 2 invariant matrix with nonnegative elements and Zy  Mxy = aEo < oo, Eo > 0. 
This implies in particular boundedness of M. 

From the requirement of translation invariance we have 
Mx~ = Mx_y.o  = M x  3" Assuming that the inverse w = M -~ exists, it is 
positive definite and 

wxy = 4/E~) (7) 
y~d  

A typical example for M considered in Section 4 is 

M = ( - A + m 2 )  - l  

where A is the lattice Laplacian and m 2 > 0. In this case w = - A  + m 2 has 
finite range. If we restrict the distribution (6) to a single lattice point, we 
get a (zero-dimensional), n-orbital model which happens to coincide 
exactly with the Wigner statistical model describing properties of highly 
excited nuclear levels in compound nucleus. (n) The model (6) can be con- 
sidered as a hybridization of the Wigner model with a gauge-invariant 
model obtained from (6) by taking n =  1, The local gauge invariance 
follows from the invariance of (6) under multiplication by phase factors, 
which can be chosen independently from site to site. The model is called 
the phase-invariant n-orbital ensemble (PIE). (4) Certainly, the case with V 
real and symmetric (V~ = V~) can also be considered. It is invariant under 
local reflections and is called the real matrix (n-orbital) ensemble (RME). 
We shall concentrate here on the PIE. The RME can be studied similarly. 

As remarked above, because of phase fluctuations 

( V -  E)~y l"# = ( V -  E)xx ~ ,5~#6xy (8) 

a relation that will also follow below from an explicit calculation. 
In (8) the bar stands for the average with respect to (6). We denote 

( V -  E ) ~  1~ = Gxx(E) = Goo(E) (9) 

The nice feature of the n-orbital model is that, as in the case of the Wigner 
model, the averaged Green's function Goo(E) can be computed exactly in 
the n -~ oo limit, (4) yielding the well-known semicircle law for the density of 
states p(E)  (E real): 
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p(E) /~=~=~z ~ImGoo(E+iO ) 

12(E2- (10) 
0, E 2 ~> Eo 2 

so that _+Eo can be identified as the band edges. 
We remark that in a certain sense the n ~ oo limit of the n-orbital 

model resembles the d--, oo limit of the d-dimensional Anderson model. (4) 
For  n < oo the density of states no longer vanishes for E 2 > E o  2 and is 
believed to develop exponential tails. A deep study of the model was under- 
taken by Wegner and co-workers (for review see Ref. 5). It is believed that 
for d > 2  the model has a central energy interval of extended states 
separated by mobility edges from regions of localized states as in the 
Anderson model. 

Since analyticity properties of the density of states are the subject of 
this paper, we remark that it has been rigorously proved (12) that for a large 
class of models with diagonal or nondiagonal disorder the (averaged) den- 
sity of states (if it exists) neither vanishes nor diverges inside the band. An 
exception (which makes the regularity problem for the density of states for 
nondiagonal disorder rather interesting) seems to be provided by a 
particular case of RME [two-sublattice models with d =  1, n =  1, with 
divergence of p(E) at E=0(13)]. 

Let us sketch the approach to the average one-particle Green's 
function of PIE based on the superfield formalism and "composite" 
variables. This material is not new and can be found scattered in the 
literature of the subject. It is intended as a reader's guide to Sections 3 
and 4. 

The matrix elements of the Green's function can be expressed with the 
help of integration over commutative and noncommutative fields qg, q)* and 

(V_  E)-I~o~o 
xo Yo 

f qg~om*fl~ exp { - s  = S XO - r ) ,  0 

X v 

o~,x  

for Im E ~ 0 and s = i sgn Im E, where Dqg* DCpx stays for 
(I /n) dRe  q)x d i m  ~0x and for definiteness the sites x, y are restricted to a 
finite box A c Z d. 
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Computing the V-average, we get 

( V-- E~ - 1~o~0 
~xO YO 

= (~ox ~p.~+~,x ~)  S t/., ~o  yo 

where 

Constantinescu et al. 

1 xV \ 'VV  "r )c :t:[~ :( ] 2n Z (q~176 + tP.*~t)~) M . ((o*~(o ~ + ~p,. Ox) 3 Dq)* Dqo DO* DO 
~,fl 

..... ' ( 1 2 )  

D ~ o *  D~o DO* D o = H Dq) .~  * ~  Dqo.~ D O  * ~  D0~ 
a , x  

Introduce the supermatrix 

We need below 
definition,(7) 

~(x)=  ~ *~ ,/,~)/~*~I (13) 

the supertrace of the product O(x)~(y),  which is, by 

Str ~b(x) ~b(y) 

. . . (p~ *~ /3 */~ 

- 4 ' . ~  *~ ~ *~ , / , ~ * ~ , / , ~ 4  '*r~) ~o.~ ~o.,,~.,, - ~  . . . . . . . .  >. 

= _ 0 x  0y)(~o>, p.~ + 0 . . . .  ) 

Let now ~, 7 be real, commuting variables 
variables. Denote by Q(x) the supermatrix 

Q(x) = (Q~(x)) = \ f l (x)  iT(x) J '  

Note that with w=  M -1 and using (14), we get 

f E" exp - g 2 Str Q(x) wx.vQ(y) 
X,.V 

- s ~' Str Q(x) ~b(x)] De Dy Dfl* Dfl 
x 

(14) 

and fi, fi* anticommuting 

i , j =  1,2 (15) 
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= exp - ~ ~ wxy[c~(x) ~(y) +fl*(x)  fl(y) 
X , y  

+ fl*(y) ~(x) + s(x) s(y)] 

- s ~  [a(x) co~(o*~4-fl*(x)d'~c~ - . x  ~-., cO,O~ *~ -- is(x) ,~.~'/'='h *=-I } 
c(,.v 

x D~ Dy Dfl* Dfi 

[ 1  
= exp - ~n ~ M (a~ro*~,,~.*~4-?,~,l,*%l,~.~ *l~ x v t ' t ' x ' p "  x Y y "V v - -  ~ w  v "F x "F.l~, " u  v 

e , f l  
g I' 

= exp - ~n ~ M..~. Str ~b(x) ~b(y) (16) 
x i' 

Inserting (16) into (12) produces (DQ = D~ Dy Dfl* Dfl) 

( V -  E) l~o,qo 
/ -VO Y0 

= s f CO~oco,/]o exp { n ~0 .~'0 - 5 ~ w,:,. Str Q(x) Q(y) 
v v 

- s ~ Str[Q(x) - E] q~(x)} DQ DcO* DcO D@* D@ 
v 

(17) 

We integrate @*, 0; cO*, cO first (the change of order in the finite volume A 
can be justified by a simple argument). The tp*, g, integration gives 

( V -  E) - 1~o/~o 
XO )"0 

S ~o , / 3 0 e x  [ - -  /q = f COxoco,,o P ~ 2 wx,~(x) ~(y) 
x v 

- n  Y~ W~y~*(x) B ( y ) - ~  2 w.#(x)  s(y) 
x ,  v x ,  .v  

xexp s 2  fl(x) co~ coati (x) i_s2[E_~(x)]co,~x cOx 
~,x E -  is(x) a,x 

x [-[ { - s [ E -  is(x)]}" DcO* DcO DQ (18) 
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and the q~*, ~o integration 

- -  l c ~ o 3  0 ( v -  E)x0,0 

{" } x exp - 5 ~ wxY[c~(x) ~(y) + 2fl*(x) fl(y) + 7(x) ~(Y)] 
X Y 

x ~ [E-c~(x)-I-. f l (x)"*(x)~-"pE-i~:(x)l"D Q E  - iv(x' J (19, 

To obtain (19), we noticed that, as expected, the Green's function is 
diagonal and we integrated (18) without the factor 

q),o roflO 
x o  "r YO 

in the integrand and then differentiated the result w.r.t, e(Xo). In the more 
compact supersymmetric notation, (19) can be written 

6xo~o(A, E, 

xexp - ~ S t r Q w Q - n S T r l n ( E - Q )  DQ (20) 

where STr acts as Str on the supersymmetric variables and as tr on the 
lattice sites and as usual Sdet is the superdeterminant (7) 

exp[ - n  Str l n ( E -  Q)] 

= Sdet(E-  Q)-" 

= ~ L E -  iT(x) + [ E -  iy(x)]ZJ 

rE--iT(x) fl*(x)fl(x) ]" 
= ~ LE-c<(x) + I-E- ~(x)]2J 

= x[I LE-  ~(x)J [E-~(x)][E-i~,(x)]J 
(21) 
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An equivalent formula is obtained by integrating in (17) directly. As an 
example, for the particular case n = 1, we obtain 

Gx~o(A,E)= - f  e x p [ - ~ S t r Q w Q - S T r l n ( E - Q )  1 

- - 1  11 x [ ( E - Q )  ]~oxoDQ (22) 

where 

1 /~*(Xo)/~(Xo) 
[ ( E - Q ) - 1 ]  1' (23) 

x0-,0 - E -  c~(Xo) F [ E -  sC(Xo)] 2 [ E -  iT(Xo) ] 

Certainly the anticommuting variables in (20) can be integrated out. The 
simplest way of doing this is to write down the last factor in the formula 
(21) as the exponential 

exp ~ n [ E -  ~(x)] - '  [ E -  i?(x)] -1/~*(x) fl(x) 
x 

The Gaussian ]~-integration gives 

where 

Gxo~o(A, E) 

.u y - 

• det[n(w- D)] D~ D~ (24) 

~ x y  

Dxy = [co(x) - E] liT(x) - E] 

Formally, for A/" yd, using translation invariance and Zy Wxy = 4/E~, one 
obtains 

4 fc~(0) exp{ n Goo(E) = - E-~ - 2 ~ m~y[o~(x) ~(y) + 7(x) 7 (Y)] 
X, y 

- n ~ In ~(x) ~E'~ det[n(w - D)] D~ D7 
x iT(x ) -- EJ 

(25) 
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We turn now to the limit of an infinite number of orbitals. For  n -~ 0o one 
expects that a saddle-point method will provide good approximation for 
G0o. The saddle-point equations in the (formal) infinite-volume limit are 

4 4 
E--- ~ e + (e - E ) - '  = --E2 i7 + (i7 - E)  - '  = 0 (26) 

with solutions (independent of x) 

e = i 7 = �89 ___ �89 2 - E~) I/2 (27) 

We have obtained two saddle points. The integrand has a singularity in the 
e plane in the upper (lower) half-plane depending on Im E being positive 
(negative). The choice of the s-saddle point is dictated by the requirement 
that the deformation of the s-integration path bringing the saddle point 
onto it does not cross this singularity. This requirement determines 
uniquely the saddle point for ]El < Eo as 

1 - 1- 2 E2)1/2 e C = ~E + ~l(E o -  for Im E = +0 

Notice integrability in the representation formulas (19), (20), (22), and 
(25) in fact over any contour Im e=cons t ,  Im iT=const ,  I m e  I m E < 0 .  
Translating e and iy by ~c in (19), we obtain 

( V -  E~ - ,~0~0 
/ X 0 .VO 

{" 1 x exp - ~ ~ w~y[e(x) c~(y) + 2fi*(x) fl(y) + 7(x) 7(y)]  
x V 

iT(x) ~2 

In (28) we integrate separately ~(u) and ~c in the sum ~2~ Wxou[e(u) + ~zc]. 
The constant e,. gives a contribution to the averaged Green's function equal 
to, for E 2 <~ E~, 

2 +2i[1 (E)2I J2 
Goo(E)] .  = oo = - ~ c  ~ - =  - E--~o - Eo [_ --  \EooJ J ' 

Im E = 4-0 (29) 
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which is exactly the n = ~ Green's function of the model, producing the 
semicircle density of states (10). The term containing the factor ~(u) can be 
expanded in an asymptotic series in powers of 1In. But for achieving a 
rigorous control of the saddle-point approximation, we have to study the 
infinite-volume limit of the integral (28). 

Formulas (22), (24), and (25) proved in this section will be used in 
Sections 3 and 4 for the analysis of the corresponding infinite-volume 
problems by the technique of cluster (high-temperature) expansions. We 
shall pay special attention to analyticity properties of the density of states. 

3. D O M I N A N T  D I A G O N A L  D I S O R D E R  A N D  
O N E  O R B I T A L  PER SITE 

Here we assume that n-- 1 and M has the form 

m = g ( l + T )  ', g > 0  (30) 

where T is a symmetric, translation-invariant matrix satisfying 

[T~.,[ ~<ee ~J" ,1 (31) 

for some positive constants ~, c~ with ~ small. We can suppose that Tx,. = 0 
by absorbing the diagonal of T in g. The result is as follows (compare 
Ref. 9). 

T h e o r e m  1. Let e < z(cQ. Then for all g > 0 and all E the density of 
states p(E)  is real analytic in E. 

Proof.  From (21), (22) we have for n =  1 

; ( '  ) G,.,. ~- G~.,.(A E)  = -- DQ exp - ~ Str QwQ Sd e t ( E -  Q)-  L 

--1 I I  x [ ( E - Q )  ]x.v (32) 

where explicitly 

Sd e t ( E -  Q)- I  ~ ~x ~E--i~,(x) 
. L E -  or + 

. . . .  ,~. c~ ( 1 
E ( E - O ~  111~= .~.v )E - (x )  ~ 

[E-~(x)]2J 

[E- -~(x) ]  2 [E--  iT(x)]J 

(33) 

- 6 ~vF (34) 
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In (32) we expand in T [ w =  g- l (1  + T)] by writing T~v= Txvsx~l.,. =1 and 
applying(14) 

1 ds ...... + 1~,-,:~. = o dsr  r 
. ), . .  

with F c  A x A [and (x, x) r F ]  and d s r =  I~(~ v)~r ds ...... etc. Thus, 

aoo = ~ 17 7(xi) (35) 
{xj} i 

where {X~} form a partition of A and 

7(X)=~fdsr~rfDQrexp - StrQ~ 
/ -  

- 1 - - S t r Q r T s Q r )  1"{ I'F, oEOCXx (36) 

with F running through connected graphs on X [where (x, x) ~ F and the 
line (x, y) ~ F at most with multiplicity one if x r y]  and Q r -  Q It. 

Now resum X~0 :  

aoo: Z 7(x) E 177(x,): E 7(X)<l>A\x: Z 7(x) (3v) 
X ~ O  U X i ~  A \ X  X ~ O  X ~ O  

This is the cluster (high-temperature) expansion for Goo. 
Note that the resummation produced partition functions which by 

supersymmetry are equal to one, thus simplifying the cluster expansion. We 
study now 7(X) in two cases: 

(i) x= {o}. 
(ii) IXl> 1. 

In case (i), 7(X) reduces to the Green's function of the one-site model, 

7({0})=(27cg)1/2 -oo V - E  exp - ~g V2 d V  

' ;  ' ) 
--- (2~g) 1/2 -oo V -  - 5 V2 d V  (38) 

which can be continued from above or below the real E axis into entire 
analytic functions (here E = E g -  1/2). 
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For  IX] > 1 use (34) to write 

~(x) = Y~ f ds; o:/(s~) 
F 

(39) 

where (see Section 2 for the details of the computa t ion)  

I (Sr )  = - g  , / 2 f  I-~ d ~ ( x ) d y ( x ) e x p  [ 1 
~ x  2re - 5 (~' (1 + Ts) ~) 

9 ( y ' ( l + T s ) y )  d e t ~ i y - E ( l + T s )  
- L ~ - E "  (c~ - -E )  2 ~ ( 0 ) -  E 

(40) 

with 2(x) = 1, x ~ 0, 2(x = 0) = 2. Equat ion (39) is estimated by the Cauchy 
formula: 

" 2~i  c t.,..,. - s ,.,. " 

1 C(~, '2) lx  - -  yl c: It.,,,I 

l 
IO,,=(,.,.,.~I(s,.,.)I ~ s u p  II(t,.,.)l It,~,.I 

c " i n f ] t w - s x ; I  2 " 

For  a <  (1/2A) e ~/'2, 

1 
inf I t,..,.- s,:,.I >2-7~ e(~"2~l ..... 1 

so that 

with 

IdrI(sr) l  ~< [ I  (4Aee  1~/2)j . . . .  q)sup [I(tr)[ (41) 
(x,3') e F 

1 e ( ~ / 2 ) l x _  y I 
IV,,I--A--7 

in the sup. 
c~  N - i ,  whence I is analytic in Im /~> - 1 / 2  and satisfies there 

For  I ( t r ) ,  translate the a-contour  of integration in (40) to 

JI(tr)[ <~ g - ' / 2 0 ( 1  )lzl (42) 
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provided we pick A > A ( e )  such that, say, Z~  ITxytx~l < t/2. We used the 
Hadamard  inequality to estimate the determinant in (40). Equations 
(39)-(42) yield the final estimate 

I~(X)L <~ g-l/2[A(cQ. O(1) ~]lxl e i~/2)~(xl (43) 

with 2~(X) the length of the shortest connected graph on the points of X. 
Convergence of (35) uniformly in e <e (e )  and A follows and hence the 
theorem. 

We note that Theorem 1 is valid also for n > 1 (several orbitals), but 
in the above estimates, e will have to tend to zero as n ~ oo. We note that 
we should expect our model to exhibit both extended and localized states 
in d >  2 for M considered above and n small. At least this is plausible for 
the particular case n = 1, Mx, y = 0 for I x -  y] > 1, as claimed by Ziegler, (9) 
who used a heuristic criterion for the existence of an Anderson transition in 
the gauge-invariant model in three dimensions. (~5) A region where one may 
hope to establish the existence of extended states rigorously for n large will 
be examined in the next section. 

4. D O M I N A N T  D I A G O N A L  DISORDER A N D  LARGE N U M B E R  
OF ORBITALS 

In this section we study the particular case 

W = - - A  -t- m 2 (44) 

where d is, as usual, the lattice Laplacian and m > 0  is large. This is a 
special case of the model discussed in Section 3, but this time we will derive 
an analyticity result for the case of large number n of orbitals. As we 
remember from the discussion in Section 2, the model with n -- oo is exactly 
solvable and provides us with a semicircular density of states in the energy 
interval - E o  ~< E~< E0, where E o = 2/m. We show that for n < oc but large 
the density of states will still be analytic in an interval ( - E o + e ,  Eo-e), 
where e is a small number depending on rn and n (for IEI large the density 
of states develops Gaussian tails, as in the Anderson model). In other 
words, we prove the following result. 

T h e o r e m  2, Let cos cr = E/Eo, where E o = 2/m is the band edge of 
the n = oo model and - E o ~< E ~< Eo. The density of states is real analytic in 
E for cr in the interval (Cro, ~ - Cro) for any positive ~o provided m > mo(ao) 
and n > no(Cro, m). 

The proof of Theorem 2 uses saddle-point methods in the ther- 
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modynamic limit. In order to understand the particularities of the problem, 
let us introduce some notations and discuss the general stategy. 

We start from formula (24) for the Green's function in finite, say 
cubic, volume A and for Im E > 0 .  In order to reduce technicalities, we 
restrict w to A by taking w = --AA + m 2, where AA is the lattice Laplacian 
with the Neumann boundary conditions. Nevertheless, the Dirichlet con- 
ditions can also be treated. In (24), we shall translate e ~ e + e , ,  
i7 ~ i7 + ~c to the saddle-point regime, where 

E i E2)1/2 1 re i~ (45) 
5, .-  2 ~ ( E ~ -  =---m 

r > 0, o- real. The result is 

Goo(A,E)=Eo - -~o  +i  1 ~oJ J + G(~176 

G~o~o)(A, E ) =  - f  [u~A ( -  A A -b m2)~ ~162 

[, , ] xexp - - ~ ( e , - - A A e ) - - ~ ( 7 , - - A A T )  

x e x p { - - n  ~ [ U ( e ( x ) ) + V ( 7 ( x ) ) ] }  
r ~ A  

x det{n[ - A  3 + m 2 - F(~, 7)] } l-[ de(x) dT(x ) 
~A 27C 

where 

(46) 

U ( e )  = l m 2 e 2  q- mre-i~ + ln(1 - rare -ir (47) 

V(7 ) = �89 -- mre i~i 7 -- ln(1 - mre-i~i7) (48) 

F ( e , ? ) x y = [ e ( x )  1 e i~  " ~ ] 1 .  1 
--mrr ]_tT(x)-~re'~J (Sx" (49) 

In this representation one can take in finite volume the limit Im E'~ 0, 
- E0 < Re E < Eo, which corresponds to r ,~ 1 and ~ e (0, re). In fact, (46) is 
analytic in re -ie for crr  ~, which corresponds to E ~ ( - o o , - E o ]  t2 
lEo, + oo). Our strategy will be to fix E e ( - E o  + e, E o -  e) corresponding 
to F= 1 and ff e (ao, n - ao) and to set up an expansion of (46) convergent 
uniformly in the volume and in E, I E -  E] ~< O(n 2) with terms analytic in 
E in this neighborhood. The real analyticity of the density of states claimed 
in Theorem 2 will then follow immediately. 

822/48/3-4~2 
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For E = / ~  and large n, the integral in (46) should be dominated by 
contributions from the saddle points of U(e) and V(7). For U(e), e = 0 is 
the only saddle point on the real axis. For  V(y), besides ~=0 ,  there is, 
however, another real saddle point 

~',, = (2/m) sin 

Moreover, Re V(y)= 0 for both ~ = 0 and ? = ~',.. Let us study the stability 
of U(~) and V(?) around the saddle points. We have 

Re U(~) = �89162 2 + mc~ cos ~ + �89 ln(1 - 2mc~ cos rY + m2~ 2) (50)  

dRe U(oO= m2~ (m2e2-  me cos 6 + 2 -  2 cos2 6) (51) 
de 1 - 2mc~ cos ~ + m2c~ 2 

For ~ e [0"1, g - - 0 " 1 ]  , where sin el = ~, c~ = 0 is the only zero of d Re U(e)/& 
and for some q > 0 

Re U(c 0 >~ ~m20~ 2 

If we admit now E complex with LE- El ~ O(n 2), still 

Re U(c 0 >~ rlm2~ 2 -  O(n 2) (52) 

holds, as can be easily seen from (47). For  V(7), 

Re V(7) = �89 2 - my sin ~Y - �89 ln(1 - 2m 7 sin ~ + m272) (53) 

and 

dRe  V(7) 
& 

m27 (m272 -- 3~ sin ff + 2 s in  2 rY) 
1 - 2m 7 sin rY + m272 

rn4y 
1 - 2m 7 sin ff + m27 2 (~ - ~'c)(~ - ];~!) (54) 

where 

2 1 
% = -  sin if, y / =  -- sin 

m m 

Thus, for I E -  El ~< O(n-2), 

1 
- o o  <7~<--s in  6 

m 
Re V(7 )/> y/m2~ 2 + 0 ( / / - 2 )  for (55) 
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1 
Re V(7+7'c)>~qm272-l-O(n -2) for - - -s in6-- .<7<oo 

m 
(56) 

Thus, at least for ~ e [(71, T/ -  (71] , we are faced with the problem of a 
(symmetric) double-well potential in 7. For the study of the ther- 
modynamic limit this will require a two-phase contour-cluster expansion of 
the type used in constructive quantum field theory (16'~7) (for lattice variants 
that are useful here see Refs. 18 and 19). The case of 
6• (O'0, 0"1)t--)(g--O'l,  7g-- 0"0) will require a modification of the argument. 
Since the function F(c~, 7) of (49) is singular for a = re/2 (i.e., for real E = 0), 
we shall also exclude initially a small interval of ff around zero, considering 
only 

6~ [0-,, /l:/2--0"2] <3 [rt/2 + a z, ~ - - a , ]  (57) 

for az > 0 small. Reinclusion of the central interval will be straightforward. 
The standard contour-cluster expansion consists first in specifying, for 

each lattice point, the potential well in which the field lives at this point, 
and next in performing the cluster expansion, decoupling the nonlocalities 
of the statistical sum inside islands of each ground state. The minima of 
Re U(e) at e = 0 and of Re V(7) at 7 = 0 and (2/m) sin ff are massive (for 
cutoff from zero and ~). Unfortunately, we have to do decouplings also in 
the determinant in (46) and it is easy to see that whereas 
-A+m2-F(~,J is massive at ~ = 7 = 0 ,  it is massless at ~ = 0 ,  
7 = (2/m)sin 6. This makes decoupling in the right minimum of Re V(7 ) 
impossible. The way out of this difficulty is suggested by the fact that the 
contribution of the determinant in the right minimum 

det[  - A  + m 2 - F(0, (2/m) sin 6)]  = d e t ( - A )  (58) 

to the integral is smaller than the contribution of the left minimum 

det[-A+m2-F(O,O)]=det[-A+m2(1-e-2i~)] (59) 

This is a one-loop effect as compared to the leading order saddle-point 
contribution and it persists for all m > 0. 

The lesson we learn from this discussion is to set up a countour-cluster 
expansion with decouplings only in the left (fully massive) minimum. The 
large undecoupled clusters with 7 around the right minimum will be out- 
weighed by the phenomenon described above. 
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In order to prove Theorem 2, it is sufficient to study 

[ ~ ] G~o2ol(A,E)= f [--m2e(0)] exp - (e, - A A e ) -  5(?, -A37)  

x e x p { - n  ~A [U(~(x))+ V(?(x))] } 

•  I-I d~(x)d?(x) (60) 
2~ 

x E A  

with U, V, F given by (47) (49). Let X- be the characteristic function of 
interval ( - ~ ,  (l/m) sin if). Then 

I =  l~I [ z _ ( 7 ( x ) ) + z _ ( - 7 ( x ) + 2 s i n 6 )  1 
~c c A m 

(61) 

\cA ,ex xeAxx 2 / m  

Let X* be the set of bonds separating X from A\X  and let Z" be the set of 
the endpoints of the bonds in X*. We have 27=27_u2;+,  where 
X =Xc~X,X,+=Xc~(A\X). We insert (61) into (60) and translate 
? ~ 7 + h, where 

~o.  ~ ~ x 
h(x) ~(7c = (2/m) sin & x ~ A \X  (62) 

Then 

with 

G(o2o ) = ~ G(oz)(x, X, A\X) (63) 
X c A  

G 121~v X, A\X) 
O0 , a ~  

= I [ -m~(~  ~ z_(~(x)) N z_(-~(xl) 
~ e X  x E A \ X  

xexp -- 5 (h, -- A Ah)--n(7, -- A Ah)--~ (e, --A Ae)---~ (7, -- A a?) 

x e x p { - - n  a [U(e(x))+V(,(x))]} 
x ~ A  

de(x) tiT(x) (64) xdet{n[-A~+m2--F(e ,~+h)]}  1-I 2~ 
x E A  
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We have 

and 

( ) (~,-~h)=~;. 2 bx~(x)- ~ b~7(x) 

where 1 ~< b~ ~< 2d is the number of bonds in X* ending at x. 
In order to decouple (64) inside the left phase region X, we introduce 

interpolating parameters sx>. for the bonds joining points in X. Using, as 
usual (see Section 3), 

(;; 
= ds r 8,{-].,...= o 

( U  is the set of bonds between points of X that are not in F), we write 

6~2~_ ~ f [--m2~(O)] IF[ X (y(x)) 1-~ 7~_(-7(x)) O0 - -  

X ~ A  x ~ X  " c ~ A \ X  

xexp --~7~. IZ*l-nyc y~ b~'/(x)- ~ bx~(x) 
x c X +  , c c X _  

x c ~ x  dsrSC~exp - 5(~' --AA(s) ~)--g (7' -A(s)•)  

-n F~ [u(~(~))+ v(~(x))3} 
. , teA 

x det { n [ -  A A(s) + m2 - F(c~, ? + h ) l } H de(x) dT(x),~ (65) 
x E A ~ t ,  

where AA(s) is the lattice Laplacian with partial decoupling on the bonds 
of F and total decoupling on those of U': 

(f, - -AA(S ) f )=  s ~ [ f ( y )  - f ( x ) l  2 
(x  v ) ~ F  

+ ~ [f(Y) - f ( x ) ]  2 

< x , v > ~ I ' u l  ~' 
x t , ~ A  

(66) 
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Given X ~ A a n d / ' ,  call a bond between points of A nondecoupled if 
it does not belong to U.  Call a subset of A connected if all its points can be 
joined by chains of nondecoupled bonds. A falls into a union of connected 
components A n with all bonds between different components decoupled. 
Clearly a term in (65) corresponding to given U' factors into a product of 
contributions from sets A~, which we shall call polymers. Moreover, the 
sums over X and/~  also factor, leading to the expression 

G(2~_ Z I-I G{o3}(A~) (67) 00 - -  
part i t ions {A~} 

where GCo3o)(A) is given by (65) with A ~ A ~  except that (i) the factor 
-mZ~(0) is dropped if 0r A~, (ii) the sum over X ~  A~ is constrained by 
demanding that all points in A~ with nearest neighbors in A \ A ,  belong to 
X, and (iii) we sum over/~ such that A~ is connected (i.e., that all its points 
can be connected by chains of nondecoupled bonds). 

The smallest possible polymer is just a one-point set {x}. Its con- 
tribution equals, for x ~ 0, 

f Z_(~(x)) ,,Eu~x~+ v ~ ]  e 

x n[m 2 - F(c~(x), 7(x))] 2~ = (68) 

as easily follows from (47)-(49) and stability bounds (52) and (55) via a 
one-loop calculation. If in (67) we fix the polymer Ao containing zero and 
resum the others, we do not obtain, as in Section 3, the original partition 
function in volume A \ A  o equal to 1. The obstruction is the constraint (ii) 
above. Hence, we shall proceed somewhat differently. Let us define G~ 
in the same way as G~o3o~(A~) except for dropping factor -m2~(0) in (65) 
altogether [-thus, G~3}(A~) = G~o3)(A~) if 0 r A~]. Then 

1~ G~ 1 (69) 
partit ions {A~} 

as the left-hand side expands the initial partition function (in full volume 
A). Now introduce 

G~o3o)( A~) = G{o3)( A~)/1] G~ (70) 
xEA~ 

With this definition, using also (69), we can rewrite (67) as 
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where now the sums over {A~} run over families of disjoint subsets A~ c A 
containing at least two points (except for A~ =0,  which may appear in the 
numerator). Equality (71) defines a correlation function of a polymer gas. 
The control of the thermodynamic limit of (71) is standard, (2~ provided 
that 

I(~0~}(A~)] ~< const x e KIA~I (72) 

for K big enough. 
Inequality (72) is what remains to be shown. It is due to three effects: 

1. In X regions the derivatives 0.,. r contribute small factors for m 
large. 

2. So do the phase boundaries s if n is large, because of the factor 
117 f~ e xp ( -5  7,--[Z'*l) in (65). 

3. In A\X small contribution comes from the one-loop effect dis- 
cussed above; see (58) and (59). 

In order to exhibit the last effect, we shall additionally insert in (65) the 
partition of unity specifying the region Yc  A\J( in which the fields are in 
essentially the perturbative regime: 

= T~ H Zl(~(x))Zl(7(x)) 
Y c A ' \ X  v ~  Y 

• [l  [1-z,(~(x))z,(?(x))] 
r ~ ( A \ X ) ' , , Y  

where Z~ is the characteristic function of the interval (-n-~/3, nl/3). We 
shall also separate the Qr derivatives, according to the Leibnitz rule, into 
those c7~, acting on exp[- �89 those 0~ ~ differentiating 
exp[-�89 and those ~ applied to the determinant. The 
derivatives of 0~' and c~,~ will be explicitly computed, whereas the differen- 
tiated determinant will be written with the help of the Cauchy integral 
formula. All this gives 

G{3)tA f oo ,-~)= ~ [1 n a~(x) c#(x) 
2~ 

X ,  Y,  F i  .'< E A ~  

• ~ z_(?(x)) H z_(-'/(x)) 
.'< ~ 2( . '.: ~ A ~ \ X  

• ~ z,(~(x))z,(~(x)) ]q Ll-z,(~(x))z,(~(x))] 
�9 c c  Y r ~ ( A ~ \ X ) \ Y  

t [ 1} xexp -572 .  2[x*l-nT:. ~ b~7(x)- 2 bx?(x) 
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2 )  IFl t  + IF2 I 

• - H [~(y)-~(x)] ~ I~ 
( ~ , y ) E  F i  ( x  v ) ~ F 2  

x exp - ~ (cq - A . l ~ ( s )  ~ ) - - ~  (7, - A x e ( S )  7) 

- ~  ~ [u(~(x))+ v(7(x)+h(x))]} 
,cEA~ 

\?Vi/ f E (t,,_~,,)~ 
< .~', )' ) e F 3 - . - . 

x det[- - A ~ ( s ,  t) + m 2 - F(c(, 7 + h)] 

[7(y)-7(x)] = 

(73) 

where in - - A A ~ ( S  , t) the S~y variables for (x,  y ) � 9  F 3 were replaced by the 
integration variables tx~ with I txy L = m2/2. 

First, let us estimate the determinant in (73). We shall use a weak 
version of the Hadamard inequality for (complex) matrices A,~, 

Idet AI ~<H ( ~  IA~ ) i  (74) 

We need a bound on m ~ - F ( c ~ ( x ) ,  7 ( x ) + h ( x ) ) ,  where F is given by (49) 
with r = l + O ( n - 2 )  and a = # + O(n-2). A rough estimate gives 

Im 2 - f ( ~ ,  y ( x )  + h(x))L <<. O(m z) (75) 

and consequently 

I(--AA~(S, t ) (x ,  y))] + ]rn 2 -  F(~(x ) ,  7(x)+  h(x) ) l  <~ O(m 2) (76) 
y 

However, for x e  Y and thus q~(x)[, jT(x)q < n  -1/3, we need a better (m- 
independent) estimate: 

Irn 2 - F(c~(x), 7 (x )  + ?',,)1 

= m 2 -  o~(x - - - - e  ì ~ 
m 

- - -  e + O ( n ' 2  x iT(x) m 

if n 1/3 >> m, say. Since, moreover, for x e Y c A ~ \ X ,  

-~A~(s, 0(x, y)= -~Ao(x, y) 
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(only the bonds joining points in X are decoupled), 

~ l ( -  A A~(s, t)(x, y)l + ImZ- F(~(x), ~(x) + y'~)l <~ 4d + l (77) 
Y 

i f x e  Y. 
Relations 

in (73): 
74) (77) result in the following bound for the determinant 

1 "] Iv31 dtx~ I 
f 1-[ --= 2det[-AA~(S,t)+m2-F(~ 

<x,,'> ~r3 (t~y -- S~y) 

--~ O(m2) fA=\YI O(1) IYI (78) 

Using this estimate and the stability bounds (52), (55), and (56), we obtain 
from (73) 

IGg)(A~)t 

~< Y~ f lq n a~(x) d~(x) [m 2 I~(O)1 ] 
2~ 

X, Y, Fi x 

X H [ 1 - -  )~ 1 (O~(X)) )~  1 ( ' / ( X ) )  ] 
r e (A~kaV)\ Y 

xexp - ~?~. I Z * l - n %  b~7(x)-  
x + x ~  v'-  

>< H [~(Y) -- O~(X) ]2 
<x,y> a Ft 

bxT(x)J} 

• [ I  [ v ( y ) - v ( x ) ]  ~ 
(x,ySeV2 

x exp {--nr/m2 ~ [~(X)2 -[- "~(X)2 ] } 
x E A ~  

X \ m g j  O(m2)  IA'xYI O(1) IYI (79) 

On the right-hand side, we may replace the factor 

O(m2)  IA~\ YI O(1) llq 

by a smaller one, 

O(rn2)lXl O(1)i A~\xl 
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diminishing somewhat r / in the Gaussian factor, since, due to the charac- 
teristic function, for x ~ (A ~\X)\ Y, 

exp{ -n~qm2[c~(x) 2 + 7(x) 2 ] } ~< exp( -nl/3~tlm 2) ~ O(m 2) 

Now, dropping the last characteristic function, we are left with Gaussian 
integrals easy to estimate, by separating different terms with the use of the 
H61der inequality. Thus, the phase boundaries contribute 

Each s-bond in F I ~ F 2  contributes O(m-2), m 2 [~(0)1 contributes (if 
present) O(m/n), and finally the normalization of the ~(x) and 7(x) 
integrals brings a factor O(m -2) for each lattice site. Gathering those 
factors together, we obtain 

x O(m-2) Ir~l+lc~l+lr31 O(1) Ixl O(m 2)lA~\xl 

from which (72) follows in a straightforward way for m > m o and n > no(m) 
if we recall the constraints on X, Y, and Fi. 

This completes the proof of Theorem 2 for 6 satisfying (57). 
Now we extend this result to cover also the central small interval 

around E = 0 ,  i.e., ff~(7c/2-~2, rc/2-I-o-2), which was excluded above 
because of the singularity of F(e, 7) at E =  0 and 7 = 1/m. We insert a par- 
tition of unity specifying the region Z in which 7(x)e (1/2m, 3/2m), outside 
of which the previous estimates work. In this region, we combine a single 
factor 

exp[ -V(7(x) ) ]  {exp I -  ~ 

x [1 -mre- i~ iy (x) ]  

(out of n) for each point with the determinant containing F to see that the 
F singularity is spurious as 

te- v(7(x))[m2 --  F(O~, 7(X))][ ~ O(m 2) 

for x E Z. The rest of the estimation follows now as before. 
In the last step of the proof we shall extend our analysis to the case 

when 5 e (ao, or1) ~ (~ - ~l, ~ -  ao) for ao > 0 arbitrarily small, m > mo(~o), 
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and n > n0(a 0, m). The idea is to rotate  the pa th  of cr integration,  which 
until now was the real axis, to e -i~~ e real, where the angle (p has to be 
chosen such that  the e-stabil i ty bound  (52) holds for Re U(e- i%0.  But [see 
(47)]  (for E = ~P) 

Re U(e-i'Pc~) = �89 2 cos 2q) + mc~ cos(cp + ~) 

+ �89 ln[1 - 2c~m cos(q) + #) + m2~ 2 ] 

and 

d Re U(e i~o~) 
d~ 

m2~ 
= 1 - 2me cos(q) + if) + m2~ 2 [m2~2 COS 2q) 

+ me cos(q) + 6) (1 -- 2 cos 2q)) + 1 + cos 2q) -- 2 cos2(q) + if)] 

Besides, at c~ = 0, the derivative d [ R e  U(e iee)]/dc~ will not change sign if 
the discr iminant  

zJ(q), o-) = COS2(q) + ~)  (1 + 2 COS 2(o) 2 --  4 cos 2q) (1 + cos 2q)) 

is nonposit ive.  This is the case for d e  Ion,  ~ - a ~ ] ,  sin r I = 1/3, as we saw 
before, for the choice q )=0 .  For  # E ( 0 ,  ~r~), we m a y  take q) = z / 6 .  Indeed, 
3(~/6,  0 ) = 0  and 3(7t/6, ~) decreases with ~ on (0, 7z/3), since cos 2 is a 
decreasing function there. An analogous  a rgument  holds for 6 e  (Tz, 7 r - a l )  
with q)= -7z/6. Moreover ,  e - i~~  ( I / m ) e  i~ stays cut off f rom zero during 
the ro ta t ion  of e in bo th  cases, assuring the regulari ty of the integrand. 
Fur thermore ,  it can be easily checked that  for r ~ (a0, a l )  u (Tr - a l ,  7r - ao) 
with a 0 small and positive, the m i n i m u m  at cr = 0 of Re U(e i~oe) stays 
massive and consequent ly  the stability bound  (52) holds after the ro ta t ion  
of e (with r/ ao-dependent  ). The  rest of the analysis proceeds as before, 
complet ing the p roof  of Theo rem 2. 

5. R E M A R K S  A N D  C O N C L U S I O N S  

We have proved  the analytici ty results for the density of states of  the 
gauge- invar iant  Wegner  model  for the case of dominan t  diagonal  disorder  
and either small or  large number  of  orbitals. In part icular ,  the results of 
Theo rem 2 holds for energies E e ( - E o  + e, E o -  ~) provided that  the num-  
ber of  orbitals is large enough. To  our  knowledge,  this is the first regularity 
result for the density of states in this region believed to contain extended 
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states in three or more dimensions. The result was obtained by rigorous 
saddle-point methods applied to the functional integral superfield represen- 
tation of the averaged resolvent. The semiclassical analysis was combined 
with a two-phase contour-cluster expansion. The peculiarity of the expan- 
sion was that one of the phases had no mass gap on the semiclassical level, 
but had the energy density shifted up by one-loop effects with respect to the 
ground-state phase. Consequently, in the cluster expansion, we decoupled 
the functional measure only in the dominant phase regions. The expansion 
was carried out for dominant diagonal disorder (large m) (this should not 
carry us out of the extended states region) and was particularly simple, 
involving, besides the Hadamard determinant inequality, simple estimates 
of Gaussian integrals. It is clear that with more technical work the 
assumption that m is large could be dropped. In particular, the massive 
phase always outweighs the massless one, as is seen from one-loop com- 
putation. 

The expected analyticity of the density of states around E =  E0 for 
large but finite n (i.e., also around the mobility edge) seems more difficult. 
Note that the analyticity fails at n = oe. Another interesting problem would 
be an extension of the present result to the Anderson model (actually, the 
case of large dimension might be tractable by similar methods). Finally, to 
prove rigorously the existence of extended states in the middle of the n = 
band for three or more dimensions and n large remains the principal open 
problem for both Wegner's and Anderson's models. Translated into the 
functional integral language, this requires the control of a massless 
(Goldstone-type, lattice) field theory. 
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